Decomposition stages as a clue for estimating the post-mortem interval in carcasses and providing accurate bird collision rates

  • Barrientos, R. et al. A review of searcher efficiency and carcass persistence in infrastructure-driven mortality assessment studies. Biol. Conserv. 222146–153 (2018).

    Google Scholar

  • Stevens, BS, Reese, KP & Connelly, JW Survival and detectability bias of avian fence collision surveys in sagebrush steppe. J. Wildl. Manag. 75437–449 (2011).

    Google Scholar

  • Hunting, K. A Roadmap for PIER Research on Avian Collisions with Power Lines in California. (2002).

  • Barrientos, R. et al. Wire marking results in a small but significant reduction in avian mortality at power lines: A baci designed study. PLOS ONE 7e32569 (2012).

    ADS CAS PubMed PubMed Central Google Scholar

  • Costantini, D., Gustin, M., Ferrarini, A. & Dell’Omo, G. Estimates of avian collision with power lines and carcass disappearance across differing environments. Anim. Conserv. 20173–181 (2017).

    Google Scholar

  • Jenkins, AR et al. Estimating the impacts of power line collisions on Ludwig’s Bustards Neotis ludwigii. Bird Conserv. Int. 21303–310 (2011).

    Google Scholar

  • Shaw, JM, Reid, TA, Schutgens, M., Jenkins, AR & Ryan, PG High power line collision mortality of threatened bustards at a regional scale in the Karoo, South Africa. Ibis (London. 1859) 1859(160), 431–446 (2018).

    Google Scholar

  • Gómez-Catasús, J. et al. Factors affecting differential underestimates of bird collision fatalities at electric lines: a case study in the Canary Islands. Ardeola 6871–94 (2021).

    Google Scholar

  • Ponce, C., Alonso, JC, Argandoña, G., García Fernández, A. & Carrasco, M. Carcass removal by scavengers and search accuracy affect bird mortality estimates at power lines. Anim. Conserv. 13603–612 (2010).

    Google Scholar

  • Bernardino, J. et al. Bird collisions with power lines: State of the art and priority areas for research. Biol. Conserv. 2221–13 (2018).

    Google Scholar

  • Brooks, JW & Sutton, L. in Veterinary Forensic Pathology (ed. Brooks, JW) 43–63 (2018). https://doi.org/10.1007/978-3-319-67172-7_4

  • Brooks, JW Postmortem changes in animal carcasses and estimation of the postmortem interval. Vet. Pathol. 53929–940 (2016).

    CAS PubMed Google Scholar

  • Ascensao, F. et al. Beware that the lack of wildlife mortality records can mask a serious impact of linear infrastructures. Global. School. Conserv. 19e00661 (2019).

    Google Scholar

  • Hau, TC, Hamzah, NH, Lian, HH & Amir Hamzah, SPA Decomposition process and post mortem changes: Review. Healthy Malaysiana 431873–1882 (2014).

    Google Scholar

  • Cooper, I in Wildlife Forensic Investigation: Principles and Practice (eds. Cooper, J. & Cooper, M.) 237–324 (CRC Press, 2013). https://doi.org/10.1201/b14553

  • Sutherland, A., Myburgh, J., Steyn, M. & Becker, PJ The effect of body size on the rate of decomposition in a temperate region of South Africa. Forensic Sci. Int. 231257–262 (2013).

    CAS PubMed Google Scholar

  • Valverde, I., Espín, S., María-Mojica, P. & García-Fernández, AJ Protocol to classify the stages of carcass decomposition and estimate the time of death in small-size raptors. Eur. J. Wildl. Res. 661–13 (2020).

    Google Scholar

  • Goff, ML in Current Concepts in Forensic Entomology (eds. Amendt, J., Goff, M., Campobasso, C. & Grassberger, M.) 1–24 (Springer, 2010). https://doi.org/10.1007/978-1-4020-9684-6_1

  • Pittner, S. et al. A field study to evaluate PMI estimation methods for advanced decomposition stages. Int. J. Legal Med. 1341361–1373 (2020).

    PubMed PubMed Central Google Scholar

  • Probst, C. et al. Estimating the postmortem interval of wild boar carcasses. Vet. Science. 76 (2020).

    PubMed Central Google Scholar

  • Cambra-Moo, Ó., Delgado-Buscalioni, Á. & Delgado-Buscalioni, R. An approach to the study of variations in early stages of gallus gallus decomposition. J. Taphon. 621–40 (2008).

    Google Scholar

  • Oates, D., Coggin, J., Hartman, F. & Hoilien, G. Guide to Time of Death in Selected Wildlife Species. (Nebraska Technical Series No. 14. Lincoln, NE, Nebraska Game and Parks Commission, 1984).

  • Hewadikaram, KA & Goff, ML Effect of carcass size on rate of decomposition and arthropod succession patterns. Am.J. Forensic Med. Pathol. 12240–265 (1991).

    Google Scholar

  • Zhou, C. & Byard, RW Factors and processes causing accelerated decomposition in human cadavers—An overview. J. Forensic Leg. Med. 186–9 (2011).

    PubMed Google Scholar

  • Cockle, DL & Bell, LS Human decomposition and the reliability of a ‘Universal’ model for post mortem interval estimations. Forensic Sci. Int. 253(136), e1-136.e9 (2015).

    Google Scholar

  • Azevedo, RR & Krüger, RF The influence of temperature and humidity on abundance and richness of Calliphoridae (Diptera). Iheringia. Zool series. 103145–152 (2013).

    Google Scholar

  • Barnes, KM in Wildlife Forensic Investigation: Principles and Practice (eds. Cooper, J. & Cooper, M.) 149–160 (CRC Press, 2013).

  • Mann, RW, Bass, WM & Meadows, L. Time since death and decomposition of the human body: Variables and observations in case and experimental field studies. J. Forensic Sci. 35103–111 (1990).

    CAS PubMed Google Scholar

  • Gliksman, D. et al. Biotic degradation at night, abiotic degradation at day: Positive feedback on litter decomposition in drylands. Global. Change Biol. 231564–1574 (2017).

    Google Scholar ads

  • Araujo, PI, Grasso, AA, González-Arzac, A., Méndez, MS & Austin, AT Sunlight and soil biota accelerate decomposition of crop residues in the Argentine Pampas. Agric. Ecosyst. About. 330107908 (2022).

    Google Scholar

  • Fernández-Palacios, JM & Martín-Esquivel, JL Naturaleza de las Islas Canarias: Ecology and Conservation. (Turquesa, 2001).

  • Kenward, MG & Roger, JH An improved approximation to the precision of fixed effects from restricted maximum likelihood. Computer. Stat. Data Anal. 532583–2595 (2009).

    MathSciNet MATH Google Scholar

  • R Core Team. A: A language and environment for statistical computing. R Foundation for Statistical Computing. http://www.r-project.org (2020).

  • Bates, D., Mächler, M., Bolker, BM & Walker, SC Fitting linear mixed-effects models using lme4. J. Stat. Softw. 671–48 (2015).

    Google Scholar

  • Kuznetsova, A., Brockhoff, PB & Christensen, RHB lmerTest package: Tests in linear mixed effects models. J. Stat. Softw. 821–26 (2017).

    Google Scholar

  • Zeileis, A. & Hothorn, T. Diagnostic checking in regression relationships. R News 27–10 (2002).

    Google Scholar

  • Halekoh, U. & Højsgaard, S. A Kenward–Roger approximation and parametric bootstrap methods for tests in linear mixed models-the R package pbkrtest. J. Stat. Softw. 591–30 (2014).

    Google Scholar

  • Fox, J. & Weisberg, S. An {R} Companion to Applied Regression, Second Edition. (Wise, 2011).

  • Barton, K. MuMIn: Multi-Model Inference. (RPackage Version 1.43.6, 2019).

  • De Rosario-Martinez, H., Fox, J. & R Core Team. Package ‘phia’ Title Post-Hoc Interaction Analysis. (RPackage Version 0.2–1, 2015).

  • Nakagawa, S. & Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4133–142 (2013).

    Google Scholar

  • Vass, A. Beyond the grave—Understanding human decomposition. Microbiol. Today 28190–192 (2001).

    Google Scholar

  • Gill-King, H. in Forensic Taphonomy: The Postmortem Fate of Human Remains (eds. Haglund, WD & Sorg, MH) 93–104 (CRC Press, 1996). https://doi.org/10.1201/9781439821923.sec2

  • Campobasso, CP, Di Vella, G. & Introna, F. Factors affecting decomposition and Diptera colonization. Forensic Sci. Int. 1218–27 (2001).

    Google Scholar

  • Austin, AT, Araujo, PI & Leva, PE Interaction of position, litter type, and water pulses on decomposition of grasses from the semiarid Patagonian steppe. Ecology 902642–2647 (2009).

    PubMed Google Scholar

  • Brandt, LA, Bonnet, C. & King, JY Photochemically induced carbon dioxide production as a mechanism for carbon loss from plant litter in arid ecosystems. J. Geophys. Res. Biogeosci. 114G02004 (2009).

    Google Scholar ads

  • Lee, H., Rahn, T. & Throop, H. An accounting of C-based trace gas release during abiotic plant litter degradation. Global. Chang. Biol. 181185–1195 (2012).

    Google Scholar ads

  • Zepp, RG, Erickson, DJ, Paul, ND & Sulzberger, B. Interactive effects of solar UV radiation and climate change on biogeochemical cycling. Photochem. Photobiol. Science. 6286–300 (2007).

    CAS PubMed Google Scholar

  • Archer, MS Rainfall and temperature effects on the decomposition rate of exposed neonatal remains. Science. Justice J. Forensic Sci. Soc. 44, 35–41 (2004).

  • Simmons, T., Adlam, RE & Moffatt, C. Debugging decomposition data—Comparative taphonomic studies and the influence of insects and carcass size on decomposition rate. J. Forensic Sci. 558–13 (2010).

    PubMed Google Scholar

  • Spicka, A., Johnson, R., Bushing, J., Higley, LG & Carter, DO Carcass mass can influence rate of decomposition and release of ninhydrin-reactive nitrogen into gravesoil. Forensic Sci. Int. 20980–85 (2011).

    CAS PubMed Google Scholar

  • Traced. in Encyclopedia of Forensic Sciences (eds. Siegel, JA, Saukko, PJ & Max, MH) 1357–1363 (Academic Press, 2000).

  • Riding, CS & Loss, SR Factors influencing experimental estimation of scavenger removal and observer detection in bird–window collision surveys. School. Appl. 282119–2129 (2018).

    PubMed Google Scholar

  • Leave a Reply

    Your email address will not be published.